Skip to article frontmatterSkip to article content

Overview

In this notebook, we will identify and plot a few different modes of climate variability with the help of an EOF package that interfaces with Xarray called xeofs.

Prerequisites

ConceptsImportanceNotes
Intro to XarrayNecessary
Intro to EOFsHelpful
  • Time to learn: 30 minutes

Imports

import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib.path as mpath
from matplotlib.colors import CenteredNorm
from scipy import stats, signal
from cartopy import crs as ccrs, feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import xeofs as xe

Accessing and preparing the data

We will use the NOAA Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5) monthly gridded dataset Huang et al., 2017, which is accessible using OPeNDAP. More information on using OPeNDAP to access NOAA data can be found here.

data_url = 'https://psl.noaa.gov/thredds/dodsC/Datasets/noaa.ersst.v5/sst.mnmean.nc'
sst = xr.open_dataset(data_url).sst
sst
Loading...

Check that the data looks as expected:

sst.isel(time=0).plot()
<Figure size 640x480 with 2 Axes>

Before we modify the data, let’s do an EOF analysis on the whole dataset:

s_model = xe.models.EOF(n_modes=4, use_coslat=True)
s_model.fit(sst, dim='time')
s_eofs = s_model.components()
s_pcs = s_model.scores()
s_expvar = s_model.explained_variance_ratio()
s_eofs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16625b210>
<Figure size 1300x300 with 5 Axes>
s_pcs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16a203110>
<Figure size 1300x300 with 4 Axes>
s_expvar
Loading...

EOF1 explains 83% of the variance, and the map shows interhemispheric asymmetry. The corresponding PC has a period of one year, which we can see more clearly by only plotting a few years:

s_pcs.sel(mode=1, time=slice('1900', '1903')).plot(figsize=(8, 3))
<Figure size 800x300 with 1 Axes>

This mode is showing the seasonal cycle. This is interesting, but it obfuscates other modes. If we want to study the other ways Earth’s climate varies, we should remove the seasonal cycle from our data. Here we compute this (calling it the SST anomaly) by subtracting out the average of each month using Xarray’s .groupby() method:

sst_clim = sst.groupby('time.month')
ssta = sst_clim - sst_clim.mean(dim='time')

The remaining 3 EOFs show a combination of the long-term warming trend, the seasonal cycle (EOF analyses do not cleanly separate physical modes), and other internal variability. The warming trend is also interesting (see the CMIP6 Cookbook), but here we want to pull out some modes of internal/natural variability. We can detrend the data by removing the global average SST anomaly.

def global_average(data):
    weights = np.cos(np.deg2rad(data.lat))
    data_weighted = data.weighted(weights)
    return data_weighted.mean(dim=['lat', 'lon'], skipna=True)
ssta_dt = (ssta - global_average(ssta)).squeeze()

Let’s find the global EOFs again but with the deseasonalized, detrended data:

ds_model = xe.models.EOF(n_modes=4, use_coslat=True)
ds_model.fit(ssta_dt, dim='time')
ds_eofs = ds_model.components()
ds_pcs = ds_model.scores()
ds_expvar = ds_model.explained_variance_ratio()
ds_eofs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16a4d0f50>
<Figure size 1300x300 with 5 Axes>
ds_pcs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16b1474d0>
<Figure size 1300x300 with 4 Axes>
ds_expvar
Loading...

Now we can see some modes of variability! EOF1 looks like ENSO or IPO, and EOF2 is probably picking up a pattern of the recent temperature trend where the Southern Ocean and southeastern Pacific are slightly cooling. EOF3 and EOF4 appear to be showing some decadal modes of variability (PDO and maybe AMO), among other things. There is a lot going on in each of these maps, so to get a clearer index of some modes, we can restrict our domain.

El Niño Southern Oscillation (ENSO)

Here we restrict our domain to the equatorial Pacific. Note that ENSO is commonly defined using an index of SST anomaly over a region of the equatorial Pacific (e.g., the Oceanic Niño Index (ONI)) instead of an EOF. You can read more about ENSO here.

ep_ssta_dt = ssta_dt.where((ssta_dt.lat < 30) & (ssta_dt.lat > -30) & (ssta_dt.lon > 120) & (ssta_dt.lon < 290), drop=True)
ep_model = xe.models.EOF(n_modes=4, use_coslat=True)
ep_model.fit(ep_ssta_dt, dim='time')
ep_eofs = ep_model.components()
ep_pcs = ep_model.scores()
ep_expvar = ep_model.explained_variance_ratio()
ep_eofs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16b2a8090>
<Figure size 1300x300 with 5 Axes>
ep_pcs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16b487150>
<Figure size 1300x300 with 4 Axes>
ep_expvar
Loading...
fig, ax = plt.subplots(1, 1, figsize=(10, 2), dpi=130)
plt.fill_between(ep_pcs.time, ep_pcs.isel(mode=0).where(ep_pcs.isel(mode=0) > 0), color='r')
plt.fill_between(ep_pcs.time, ep_pcs.isel(mode=0).where(ep_pcs.isel(mode=0) < 0), color='b')
plt.ylabel('PC')
plt.xlabel('Year')
plt.xlim(ep_pcs.time.min(), ep_pcs.time.max())
plt.grid(linestyle=':')
plt.title('ENSO Index (detrended equatorial Pacific SSTA EOF1)')
<Figure size 1300x260 with 1 Axes>

Compare to the ONI:

fig, ax = plt.subplots(1, 1, figsize=(10, 2), dpi=130)
plt.fill_between(ep_pcs.time, ep_pcs.isel(mode=0).where(ep_pcs.isel(mode=0) > 0), color='r')
plt.fill_between(ep_pcs.time, ep_pcs.isel(mode=0).where(ep_pcs.isel(mode=0) < 0), color='b')
plt.ylabel('PC')
plt.xlabel('Year')
plt.xlim(ep_pcs.time.sel(time='1950-01').squeeze(), ep_pcs.time.max())
plt.grid(linestyle=':')
plt.title('ENSO Index (detrended equatorial Pacific SSTA EOF1)')
<Figure size 1300x260 with 1 Axes>

ONI

Pacific Decadal Oscillation (PDO)

Here we restrict our domain to the North Pacific. You can read more about PDO here.

np_ssta_dt = ssta_dt.where((ssta_dt.lat < 70) & (ssta_dt.lat > 20) & (ssta_dt.lon > 120) & (ssta_dt.lon < 260), drop=True)
np_model = xe.models.EOF(n_modes=4, use_coslat=True)
np_model.fit(np_ssta_dt, dim='time')
np_eofs = np_model.components()
np_pcs = np_model.scores()
np_expvar = np_model.explained_variance_ratio()
np_eofs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16c01aa50>
<Figure size 1300x300 with 5 Axes>
np_pcs.plot(col='mode')
<xarray.plot.facetgrid.FacetGrid at 0x16c152410>
<Figure size 1300x300 with 4 Axes>
np_expvar
Loading...
fig, ax = plt.subplots(1, 1, figsize=(10, 2), dpi=130)
plt.fill_between(np_pcs.time, np_pcs.isel(mode=0).where(np_pcs.isel(mode=0) > 0), color='r')
plt.fill_between(np_pcs.time, np_pcs.isel(mode=0).where(np_pcs.isel(mode=0) < 0), color='b')
plt.plot(np_pcs.time, np_pcs.isel(mode=0).rolling(time=48, center=True).mean(), color='k', linewidth=2)
plt.ylabel('PC')
plt.xlabel('Year')
plt.xlim(np_pcs.time.min(), np_pcs.time.max())
plt.grid(linestyle=':')
plt.title('PDO Index (detrended North Pacific SSTA EOF1)')
<Figure size 1300x260 with 1 Axes>

Summary

In this notebook, we demonstrated a basic workflow for performing an EOF analysis on gridded SST data using the xeofs package. We plotted the PCs associated with ENSO and PDO using deseasonalized, detrended SSTs.

What’s next?

In the future, additional notebooks may use EOFs to recreate published figures, give an overview of other EOF packages, or explore variations of the EOF method.

References
  1. Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30(20), 8179–8205. 10.1175/JCLI-D-16-0836.1