Reproducing Key Figures from Kay et al. (2015)¶
Overview¶
This notebook demonstrates how one might use the NCAR Community Earth System Model (CESM) Large Ensemble (LENS) data hosted on AWS S3. The notebook shows how to reproduce figures 2 and 4 from the Kay et al. (2015) paper describing the CESM LENS dataset Kay et al., 2015.
This resource is intended to be helpful for people not familiar with elements of the Pangeo framework including Jupyter Notebooks, Xarray, and Zarr data format, or with the original paper, so it includes additional explanation.
Imports¶
import sys
import warnings
warnings.filterwarnings("ignore")
import intake
import matplotlib.pyplot as plt
from dask.distributed import Client
import numpy as np
import pandas as pd
import xarray as xr
import cmaps # for NCL colormaps
import cartopy.crs as ccrs
import dask
import s3fs
dask.config.set({"distributed.scheduler.worker-saturation": 1.0})
Create and Connect to Dask Distributed Cluster¶
Here we’ll use a dask cluster to parallelize our analysis.
platform = sys.platform
if (platform == 'win32'):
import multiprocessing.popen_spawn_win32
else:
import multiprocessing.popen_spawn_posix
client = Client()
client
Load and Prepare Data¶
catalog_url = 'https://ncar-cesm-lens.s3-us-west-2.amazonaws.com/catalogs/aws-cesm1-le.json'
col = intake.open_esm_datastore(catalog_url)
col
Show the first few lines of the catalog:
col.df.head(10)
Show expanded version of collection structure with details:
col.keys_info().head()
Extract data needed to construct Figure 2¶
Search the catalog to find the desired data, in this case the reference height temperature of the atmosphere, at daily time resolution, for the Historical, 20th Century, and RCP8.5 (IPCC Representative Concentration Pathway 8.5) experiments.
col_subset = col.search(frequency=["daily", "monthly"], component="atm", variable="TREFHT",
experiment=["20C", "RCP85", "HIST"])
col_subset
col_subset.df
Load catalog entries for subset into a dictionary of Xarray Datasets:
dsets = col_subset.to_dataset_dict(zarr_kwargs={"consolidated": True}, storage_options={"anon": True})
print(f"\nDataset dictionary keys:\n {dsets.keys()}")
Define Xarray Datasets corresponding to the three experiments:
ds_HIST = dsets['atm.HIST.monthly']
ds_20C = dsets['atm.20C.daily']
ds_RCP85 = dsets['atm.RCP85.daily']
Use the dask.distributed
utility function to display size of each dataset:
from dask.utils import format_bytes
print(f"Historical: {format_bytes(ds_HIST.nbytes)}\n"
f"20th Century: {format_bytes(ds_20C.nbytes)}\n"
f"RCP8.5: {format_bytes(ds_RCP85.nbytes)}")
Now, extract the Reference Height Temperature data variable:
t_hist = ds_HIST["TREFHT"]
t_20c = ds_20C["TREFHT"]
t_rcp = ds_RCP85["TREFHT"]
t_20c
The global surface temperature anomaly was computed relative to the 1961-90 base period in the Kay et al. paper, so extract that time slice:
t_ref = t_20c.sel(time=slice("1961", "1990"))
Figure 2¶
Read grid cell areas¶
Cell size varies with latitude, so this must be accounted for when computing the global mean.
cat = col.search(frequency="static", component="atm", experiment=["20C"])
_, grid = cat.to_dataset_dict(aggregate=False, storage_options={'anon':True}, zarr_kwargs={"consolidated": True}).popitem()
grid
cell_area = grid.area.load()
total_area = cell_area.sum()
cell_area
Define weighted means¶
Note: resample(time="AS")
does an annual resampling based on start of calendar year. See documentation for Pandas resampling options.
t_ref_ts = (
(t_ref.resample(time="AS").mean("time") * cell_area).sum(dim=("lat", "lon"))
/ total_area
).mean(dim=("time", "member_id"))
t_hist_ts = (
(t_hist.resample(time="AS").mean("time") * cell_area).sum(dim=("lat", "lon"))
) / total_area
t_20c_ts = (
(t_20c.resample(time="AS").mean("time") * cell_area).sum(dim=("lat", "lon"))
) / total_area
t_rcp_ts = (
(t_rcp.resample(time="AS").mean("time") * cell_area).sum(dim=("lat", "lon"))
) / total_area
Read data and compute means¶
Dask’s “lazy execution” philosophy means that until this point we have not actually read the bulk of the data. Steps 1, 3, and 4 take a while to complete, so we include the Notebook “cell magic” directive %%time
to display elapsed and CPU times after computation.
Step 1 (takes a while)
%%time
# this cell takes a while, be patient
t_ref_mean = t_ref_ts.load()
t_ref_mean
Step 2 (executes quickly)
%%time
t_hist_ts_df = t_hist_ts.to_series().T
#t_hist_ts_df.head()
Step 3 (takes even longer than Step 1)
%%time
t_20c_ts_df = t_20c_ts.to_series().unstack().T
t_20c_ts_df.head()
Step 4 (similar to Step 3 in its execution time)
%%time
# This also takes a while
t_rcp_ts_df = t_rcp_ts.to_series().unstack().T
t_rcp_ts_df.head()
Get observations for Figure 2 (HadCRUT4)¶
The HadCRUT4 temperature dataset is described by Morice et al. (2012).
Observational time series data for comparison with ensemble average:
obsDataURL = "https://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/cru/hadcrut4/air.mon.anom.median.nc"
ds = xr.open_dataset(obsDataURL).load()
ds
def weighted_temporal_mean(ds):
"""
weight by days in each month
"""
time_bound_diff = ds.time_bnds.diff(dim="nbnds")[:, 0]
wgts = time_bound_diff.groupby("time.year") / time_bound_diff.groupby(
"time.year"
).sum(xr.ALL_DIMS)
obs = ds["air"]
cond = obs.isnull()
ones = xr.where(cond, 0.0, 1.0)
obs_sum = (obs * wgts).resample(time="AS").sum(dim="time")
ones_out = (ones * wgts).resample(time="AS").sum(dim="time")
obs_s = (obs_sum / ones_out).mean(("lat", "lon")).to_series()
return obs_s
Limit observations to 20th century:
obs_s = weighted_temporal_mean(ds)
obs_s = obs_s['1920':]
obs_s.head()
all_ts_anom = pd.concat([t_20c_ts_df, t_rcp_ts_df]) - t_ref_mean.data
years = [val.year for val in all_ts_anom.index]
obs_years = [val.year for val in obs_s.index]
Combine ensemble member 1 data from historical and 20th century experiments:
hist_anom = t_hist_ts_df - t_ref_mean.data
member1 = pd.concat([hist_anom.iloc[:-2], all_ts_anom.iloc[:,0]], verify_integrity=True)
member1_years = [val.year for val in member1.index]
Plotting Figure 2¶
Global surface temperature anomaly (1961-90 base period) for individual ensemble members, and observations:
ax = plt.axes()
ax.tick_params(right=True, top=True, direction="out", length=6, width=2, grid_alpha=0.5)
ax.plot(years, all_ts_anom.iloc[:,1:], color="grey")
ax.plot(obs_years, obs_s['1920':], color="red")
ax.plot(member1_years, member1, color="black")
ax.text(
0.35,
0.4,
"observations",
verticalalignment="bottom",
horizontalalignment="left",
transform=ax.transAxes,
color="red",
fontsize=10,
)
ax.text(
0.35,
0.33,
"members 2-40",
verticalalignment="bottom",
horizontalalignment="left",
transform=ax.transAxes,
color="grey",
fontsize=10,
)
ax.text(
0.05,
0.2,
"member 1",
verticalalignment="bottom",
horizontalalignment="left",
transform=ax.transAxes,
color="black",
fontsize=10,
)
ax.set_xticks([1850, 1920, 1950, 2000, 2050, 2100])
plt.ylim(-1, 5)
plt.xlim(1850, 2100)
plt.ylabel("Global Surface\nTemperature Anomaly (K)")
plt.show()
Figure 4¶
Compute linear trend for winter seasons¶
def linear_trend(da, dim="time"):
da_chunk = da.chunk({dim: -1})
trend = xr.apply_ufunc(
calc_slope,
da_chunk,
vectorize=True,
input_core_dims=[[dim]],
output_core_dims=[[]],
output_dtypes=[np.float64],
dask="parallelized",
)
return trend
def calc_slope(y):
"""ufunc to be used by linear_trend"""
x = np.arange(len(y))
# drop missing values (NaNs) from x and y
finite_indexes = ~np.isnan(y)
slope = np.nan if (np.sum(finite_indexes) < 2) else np.polyfit(x[finite_indexes], y[finite_indexes], 1)[0]
return slope
Compute ensemble trends¶
%%time
# Takes several minutes
t = xr.concat([t_20c, t_rcp], dim="time")
seasons = t.sel(time=slice("1979", "2012")).resample(time="QS-DEC").mean("time")
# Include only full seasons from 1979 and 2012
seasons = seasons.sel(time=slice("1979", "2012")).load()
winter_seasons = seasons.sel(
time=seasons.time.where(seasons.time.dt.month == 12, drop=True)
)
winter_trends = linear_trend(
winter_seasons.chunk({"lat": 20, "lon": 20, "time": -1})
).load() * len(winter_seasons.time)
# Compute ensemble mean from the first 30 members
winter_trends_mean = winter_trends.isel(member_id=range(30)).mean(dim='member_id')
Make sure that we have 34 seasons:
assert len(winter_seasons.time) == 34
Get observations for Figure 4 (NASA GISS GisTemp)¶
This is observational time series data for comparison with ensemble average. Here we are using the GISS Surface Temperature Analysis (GISTEMP v4) from NASA’s Goddard Institute of Space Studies Lenssen et al., 2019.
Define the URL to Project Pythia’s Jetstream2 Object Store and the path to the Zarr file.
URL = 'https://js2.jetstream-cloud.org:8001'
filePath = 's3://pythia/gistemp1200_GHCNv4_ERSSTv5.zarr'
Create a container for the S3 file system
fs = s3fs.S3FileSystem(anon=True, client_kwargs=dict(endpoint_url=URL))
Link to the Zarr file as it exists on the S3 object store
store = s3fs.S3Map(root=filePath, s3=fs, check=False )
ds = xr.open_zarr(store, consolidated=True, chunks="auto")
ds
Create an Xarray Dataset
from the Zarr object
Remap longitude range from [-180, 180] to [0, 360] for plotting purposes:
ds = ds.assign_coords(lon=((ds.lon + 360) % 360)).sortby('lon')
ds
Compute observed trends¶
Include only full seasons from 1979 through 2012:
obs_seasons = ds.sel(time=slice("1979", "2012")).resample(time="QS-DEC").mean("time")
obs_seasons = obs_seasons.sel(time=slice("1979", "2012")).load()
obs_winter_seasons = obs_seasons.sel(
time=obs_seasons.time.where(obs_seasons.time.dt.month == 12, drop=True)
)
obs_winter_seasons
And compute observed winter trends:
obs_winter_trends = linear_trend(
obs_winter_seasons.chunk({"lat": 20, "lon": 20, "time": -1})
).load() * len(obs_winter_seasons.time)
obs_winter_trends
Plotting Figure 4¶
Global maps of historical (1979 - 2012) boreal winter (DJF) surface air trends:
contour_levels = [-6, -5, -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6]
color_map = cmaps.ncl_default
def make_map_plot(nplot_rows, nplot_cols, plot_index, data, plot_label):
""" Create a single map subplot. """
ax = plt.subplot(nplot_rows, nplot_cols, plot_index, projection = ccrs.Robinson(central_longitude = 180))
cplot = plt.contourf(lons, lats, data,
levels = contour_levels,
cmap = color_map,
extend = 'both',
transform = ccrs.PlateCarree())
ax.coastlines(color = 'grey')
ax.text(0.01, 0.01, plot_label, fontsize = 14, transform = ax.transAxes)
return cplot, ax
%%time
# Generate plot (may take a while as many individual maps are generated)
numPlotRows = 8
numPlotCols = 4
figWidth = 20
figHeight = 30
fig, axs = plt.subplots(numPlotRows, numPlotCols, figsize=(figWidth,figHeight))
lats = winter_trends.lat
lons = winter_trends.lon
# Create ensemble member plots
for ensemble_index in range(30):
plot_data = winter_trends.isel(member_id = ensemble_index)
plot_index = ensemble_index + 1
plot_label = str(plot_index)
plotRow = ensemble_index // numPlotCols
plotCol = ensemble_index % numPlotCols
# Retain axes objects for figure colorbar
cplot, axs[plotRow, plotCol] = make_map_plot(numPlotRows, numPlotCols, plot_index, plot_data, plot_label)
# Create plots for the ensemble mean, observations, and a figure color bar.
cplot, axs[7,2] = make_map_plot(numPlotRows, numPlotCols, 31, winter_trends_mean, 'EM')
lats = obs_winter_trends.lat
lons = obs_winter_trends.lon
cplot, axs[7,3] = make_map_plot(numPlotRows, numPlotCols, 32, obs_winter_trends.tempanomaly, 'OBS')
cbar = fig.colorbar(cplot, ax=axs, orientation='horizontal', shrink = 0.7, pad = 0.02)
cbar.ax.set_title('1979-2012 DJF surface air temperature trends (K/34 years)', fontsize = 16)
cbar.set_ticks(contour_levels)
cbar.set_ticklabels(contour_levels)
Close our client:
client.close()
Summary¶
In this notebook, we used CESM LENS data hosted on AWS to recreate two key figures in the paper that describes the project.
What’s next?¶
More example workflows using these datasets may be added in the future.
- Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsday, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., … Vertenstein, M. (2015). The Community Earth System Model (CESM) Large Ensemble Project. Bull. Amer. Meteor. Soc. 10.1175/BAMS-D-13-00255.1
- Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos., 117(D8). 10.1029/2011JD017187
- Lenssen, N., Schmidt, G., Hansen, J., Menne, M., Persin, A., Ruedy, R., & Zyss, D. (2019). Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research: Atmospheres, 124(12), 6307–6326. 10.1029/2018JD029522